TML

TML

ThoughtSpot developed its own scriptable approach for exporting, enhancing, and migrating Worksheets, views, tables, Liveboards, Monitor alerts, and Answers. Use TML (ThoughtSpot Modeling Language) to modify a ThoughtSpot object in a flat-file format. Users can model data and build out sophisticated dashboards in the test environment, before deploying to all users.

Structure of a TML file🔗

To work with TML files for Worksheets, views, SQL views, tables, Answers, Liveboards, and Monitor alerts in ThoughtSpot, you can download these objects as a flat file in .TML format, modify, and subsequently upload the TMLs either to the same or a different cluster.

The TML syntax varies per object type. However, all TMLs follow a general pattern that allows programmatic edits. ThoughtSpot offers a lot of flexibility within its set of data objects, and there is no particular hierarchy to TML files, but rather just some rules.

See the following pages for the detailed syntax of TML files for each object type:

For TML modification tips and recommendations, see TML modification.

TML import and export via REST API🔗

The TML API endpoints allow you to programmatically export, validate, and import scriptable TML files. You can use these API endpoints to automate the change management and deployment processes between your development and production environments. With TML API, you can easily migrate your ThoughtSpot content from one environment to another by automating the entire change management process and thereby reducing the risk of human error.

Note

If using older versions of TML files for Liveboards, ensure that your TML file has the object name as liveboard. Replace any pinboard occurrences with liveboard before import.

Import TML🔗

To import a modified TML object, your account must have the DATAMANAGEMENT (Can manage data) or ADMINISTRATION (Can administer ThoughtSpot) privilege.

You can import single or multiple objects using the tml/import API. If you are importing TML files one at a time, include the fqn property to distinguish objects that have the same name. If you have multiple connections or tables with the same name and the Connection or Table you reference in your TML does not have a unique name, it can lead to invalid object references. Adding fqn helps ThoughtSpot differentiate a Table from another with the same name.

By default, the fqn parameter is not present in the TML file. However, you can export TML with FQNs and use it during the import.

To import TML representation of the metadata objects into ThoughtSpot, use one of the following API endpoints:

There are multiple kinds of imports possible:

  • PARTIAL imports all objects that validate successfully, and ignores objects that do not validate successfully.

  • ALL_OR_NONE imports the objects that validate successfully.

  • VALIDATE_ONLY validates the objects but does not import them.

You can also specify additional parameters to set the Org context and skip CDW validation checks for Table TMLs.

Note

If you import only a Worksheet object, it may take some time for the Worksheet to become available in the ThoughtSpot system. You may need to wait for a few seconds to create answers and Liveboards.

However, if you import a Worksheet along with Liveboards, answers, and other dependent objects in a single API call, the imported objects will be immediately available for use.

Import TML objects asynchronously🔗

The REST v1 and v2 metadata/tml/import APIs import TML objects synchronously. When you try to import large and complex metadata objects, the synchronous import operation takes more time to process data and sometimes can result in a timeout error.

To allow mutually exclusive import tasks to run in parallel, process TML objects asynchronously, and check import task status, ThoughtSpot provides the following APIs:

Schedule import tasks🔗

You can import TML objects asynchronously by scheduling TML import tasks via POST request to POST /api/rest/2.0/metadata/tml/async/import API endpoint. You can send the following parameters in the API request body:

Form parameterDescriptionDefault

metadata_tmls

Array of strings. Array of the TML strings.

None

create_new
Optional

Boolean. To create TML objects with new GUIDs during import, specify true. By default, ThoughtSpot updates the existing objects that have the same GUID as the objects you are importing.

false

all_orgs_context
Optional

Boolean. Specify if import operation must be run for all Orgs on your instance.

Requires Org administration privileges to access TML objects across all Orgs.

false

import_policy

String. Available from 10.5.0.cl. Policy to follow during import. The allowed values are:

  • PARTIAL
    Imports objects that validate successfully. Skips the objects that do not validate successfully and their dependent objects if any.

  • ALL_OR_NONE
    Imports all objects that validate successfully. If the import fails for one object, no objects will be imported.

  • VALIDATE_ONLY
    Validates the objects but does not import them.

  • PARTIAL_OBJECT
    Imports objects that validate successfully and skips the objects that do not validate successfully. If the import fails for a visualization object in a Liveboard TML, the Liveboard will be imported without that visualization object. Similarly, if importing a relationship in a logical table fails, the table TML will be imported with warnings in the API response.

PARTIAL_OBJECT

skip_cdw_validation_for_tables
Optional

Boolean. Skips Cloud Data Warehouse validation for table TML imports.

false

enable_large_metadata_validation
Optional

Boolean. Available from 10.5.0.cl. Enables validation for large metadata objects.

false

Example request🔗

curl -X POST \
  --url 'https://{ThoughtSpot-host}/api/rest/2.0/metadata/tml/async/import'  \
  -H 'Accept: application/json' \
  -H 'Content-Type: application/json' \
  -H 'Authorization: Bearer {AUTH_TOKEN}' \
  --data-raw '{
  "metadata_tmls": [
    "{\\\"guid\\\": \\\"2ed8192a-1e9d-47d1-810d-52b14cb0e9fe\\\",\\\"liveboard\\\": {\\\"name\\\": \\\"Total Sales\\\",\\\"visualizations\\\": [{\\\"id\\\": \\\"Viz_1\\\",\\\"answer\\\": {\\\"name\\\": \\\"Total quantity purchased, Total sales by region\\\",\\\"description\\\": \\\"test\\\",\\\"tables\\\": [{\\\"id\\\": \\\"(Sample) Retail - Apparel\\\",\\\"name\\\": \\\"(Sample) Retail - Apparel\\\"}],\\\"search_query\\\": \\\"[region] [quantity purchased] [sales]\\\",\\\"answer_columns\\\": [{\\\"name\\\": \\\"Total quantity purchased\\\"},{\\\"name\\\": \\\"Total sales\\\"},{\\\"name\\\": \\\"region\\\"}],\\\"table\\\": {\\\"table_columns\\\": [{\\\"column_id\\\": \\\"Total quantity purchased\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"Total sales\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"region\\\",\\\"show_headline\\\": false}],\\\"ordered_column_ids\\\": [\\\"region\\\",\\\"Total quantity purchased\\\",\\\"Total sales\\\"],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"tableVizPropVersion\\\\\\\": \\\\\\\"V1\\\\\\\"}\\\"},\\\"chart\\\": {\\\"type\\\": \\\"COLUMN\\\",\\\"chart_columns\\\": [{\\\"column_id\\\": \\\"Total quantity purchased\\\"},{\\\"column_id\\\": \\\"Total sales\\\"},{\\\"column_id\\\": \\\"region\\\"}],\\\"axis_configs\\\": [{\\\"x\\\": [\\\"region\\\"],\\\"y\\\": [\\\"Total quantity purchased\\\",\\\"Total sales\\\"]}],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"version\\\\\\\": \\\\\\\"V4DOT2\\\\\\\",\\\\\\\"chartProperties\\\\\\\": {\\\\\\\"responsiveLayoutPreference\\\\\\\": \\\\\\\"AUTO_ON\\\\\\\",\\\\\\\"chartSpecific\\\\\\\": {}},\\\\\\\"axisProperties\\\\\\\": [{\\\\\\\"id\\\\\\\": \\\\\\\"f6701821-5630-49cd-b26f-f98bebb4e98e\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"Y\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"Total quantity purchased\\\\\\\"],\\\\\\\"isOpposite\\\\\\\": false}},{\\\\\\\"id\\\\\\\": \\\\\\\"1e086aef-236d-4cf0-8909-9e04e04a1ac4\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"Y\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"Total sales\\\\\\\"],\\\\\\\"isOpposite\\\\\\\": true}},{\\\\\\\"id\\\\\\\": \\\\\\\"7be648d3-c791-43e4-bb13-63fea808f326\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"X\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"region\\\\\\\"]}}],\\\\\\\"systemSeriesColors\\\\\\\": [{\\\\\\\"serieName\\\\\\\": \\\\\\\"Total quantity purchased\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#48D1E0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"Total sales\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#2E75F0\\\\\\\"}]}\\\"},\\\"display_mode\\\": \\\"CHART_MODE\\\"},\\\"viz_guid\\\": \\\"b8b38851-5980-40a1-bd88-608b7a9c6e86\\\"},{\\\"id\\\": \\\"Viz_2\\\",\\\"answer\\\": {\\\"name\\\": \\\"Total sales in a year\\\",\\\"tables\\\": [{\\\"id\\\": \\\"(Sample) Retail - Apparel\\\",\\\"name\\\": \\\"(Sample) Retail - Apparel\\\"}],\\\"search_query\\\": \\\"[sales] [store] [date].monthly [date].'\''this year'\''\\\",\\\"answer_columns\\\": [{\\\"name\\\": \\\"Month(date)\\\"},{\\\"name\\\": \\\"Total sales\\\"},{\\\"name\\\": \\\"store\\\"}],\\\"table\\\": {\\\"table_columns\\\": [{\\\"column_id\\\": \\\"Month(date)\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"Total sales\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"store\\\",\\\"show_headline\\\": false}],\\\"ordered_column_ids\\\": [\\\"store\\\",\\\"Month(date)\\\",\\\"Total sales\\\"],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"tableVizPropVersion\\\\\\\": \\\\\\\"V1\\\\\\\"}\\\"},\\\"chart\\\": {\\\"type\\\": \\\"LINE\\\",\\\"chart_columns\\\": [{\\\"column_id\\\": \\\"Month(date)\\\"},{\\\"column_id\\\": \\\"Total sales\\\"},{\\\"column_id\\\": \\\"store\\\"}],\\\"axis_configs\\\": [{\\\"x\\\": [\\\"Month(date)\\\"],\\\"y\\\": [\\\"Total sales\\\"],\\\"color\\\": [\\\"store\\\"]}],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"version\\\\\\\": \\\\\\\"V4DOT2\\\\\\\",\\\\\\\"chartProperties\\\\\\\": {\\\\\\\"responsiveLayoutPreference\\\\\\\": \\\\\\\"AUTO_ON\\\\\\\",\\\\\\\"chartSpecific\\\\\\\": {}},\\\\\\\"axisProperties\\\\\\\": [{\\\\\\\"id\\\\\\\": \\\\\\\"feb33c4a-614b-4623-9d12-1c4cf2250801\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"Y\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"Total sales\\\\\\\"],\\\\\\\"isOpposite\\\\\\\": false}},{\\\\\\\"id\\\\\\\": \\\\\\\"e89293cb-d10a-40d5-b787-81be33cc8b81\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"X\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"Month(date)\\\\\\\"]}}],\\\\\\\"systemSeriesColors\\\\\\\": [{\\\\\\\"serieName\\\\\\\": \\\\\\\"6a4acb32-9036-4d4c-a830-f2b06966a322\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#48D1E0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"39e5242e-43d0-4ef7-8673-73b12433e0c5\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#2E75F0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"arizona (85226)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#2E75F0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"arizona (86001)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#48D1E0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"california (91006)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#FCC838\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"california (94702)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#06BF7F\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"colorado (80301)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#8C62F5\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"colorado (80920)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#FF8142\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"connecticut (06110)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#ABC7F9\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"connecticut (06854)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#B5ECF2\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"delaware (19702)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#FDE9AF\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"georgia (30022)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#9BE5CB\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"georgia (30329)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#D1C0FB\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"idaho (83704)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#FFCCB3\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"illinois (60062)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#2359B6\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"illinois (60642)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#369FAA\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"indiana (46250)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#BF982A\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"iowa (50266)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#049160\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"maryland (21045)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#6A4ABA\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"massachusetts (01701)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#C26232\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"massachusetts (02215)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#71A1F4\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"michigan (48103)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#82DFE9\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"michigan (49512)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#FCD977\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"minnesota (55369)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#56D3A8\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"minnesota (55420)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#B094F8\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"missouri (63144)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#FFA97E\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"montana (59106)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#163772\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"montana (59718)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#22636B\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"nevada (89052)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#785F1A\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"nevada (89145)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#025B3C\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"new hampshire (03860)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#422E75\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"new jersey (07936)\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#7A3D1F\\\\\\\"}]}\\\"},\\\"display_mode\\\": \\\"CHART_MODE\\\"},\\\"viz_guid\\\": \\\"7efc7b0e-e680-44a4-ba9c-3bd5d7272367\\\"},{\\\"id\\\": \\\"Viz_3\\\",\\\"answer\\\": {\\\"name\\\": \\\"Total sales by item type and region\\\",\\\"tables\\\": [{\\\"id\\\": \\\"(Sample) Retail - Apparel\\\",\\\"name\\\": \\\"(Sample) Retail - Apparel\\\"}],\\\"search_query\\\": \\\"[sales] [item type] [region]\\\",\\\"answer_columns\\\": [{\\\"name\\\": \\\"Total sales\\\"},{\\\"name\\\": \\\"item type\\\"},{\\\"name\\\": \\\"region\\\"}],\\\"table\\\": {\\\"table_columns\\\": [{\\\"column_id\\\": \\\"Total sales\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"item type\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"region\\\",\\\"show_headline\\\": false}],\\\"ordered_column_ids\\\": [\\\"item type\\\",\\\"region\\\",\\\"Total sales\\\"],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"tableVizPropVersion\\\\\\\": \\\\\\\"V1\\\\\\\"}\\\"},\\\"chart\\\": {\\\"type\\\": \\\"STACKED_COLUMN\\\",\\\"chart_columns\\\": [{\\\"column_id\\\": \\\"Total sales\\\"},{\\\"column_id\\\": \\\"item type\\\"},{\\\"column_id\\\": \\\"region\\\"}],\\\"axis_configs\\\": [{\\\"x\\\": [\\\"item type\\\"],\\\"y\\\": [\\\"Total sales\\\"],\\\"color\\\": [\\\"region\\\"]}],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"version\\\\\\\": \\\\\\\"V4DOT2\\\\\\\",\\\\\\\"chartProperties\\\\\\\": {\\\\\\\"responsiveLayoutPreference\\\\\\\": \\\\\\\"AUTO_ON\\\\\\\",\\\\\\\"chartSpecific\\\\\\\": {}},\\\\\\\"axisProperties\\\\\\\": [{\\\\\\\"id\\\\\\\": \\\\\\\"a330db6d-3714-4b5f-aed7-cca5ab679502\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"Y\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"Total sales\\\\\\\"],\\\\\\\"isOpposite\\\\\\\": false}},{\\\\\\\"id\\\\\\\": \\\\\\\"96ac1ce3-7efd-455e-a569-2cd0792b5f95\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"X\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"item type\\\\\\\"]}}],\\\\\\\"systemSeriesColors\\\\\\\": [{\\\\\\\"serieName\\\\\\\": \\\\\\\"Total sales\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#48D1E0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"92153012-664c-458e-9a74-6138c5030838\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#2E75F0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"east\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#06BF7F\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"midwest\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#FCC838\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"south\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#48D1E0\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"southwest\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#71A1F4\\\\\\\"},{\\\\\\\"serieName\\\\\\\": \\\\\\\"west\\\\\\\",\\\\\\\"color\\\\\\\": \\\\\\\"#2E75F0\\\\\\\"}]}\\\"},\\\"display_mode\\\": \\\"CHART_MODE\\\"},\\\"viz_guid\\\": \\\"9de47a0e-6f20-40ba-9a52-3374ee530f09\\\"},{\\\"id\\\": \\\"Viz_4\\\",\\\"answer\\\": {\\\"name\\\": \\\"Total sales by state\\\",\\\"tables\\\": [{\\\"id\\\": \\\"(Sample) Retail - Apparel\\\",\\\"name\\\": \\\"(Sample) Retail - Apparel\\\"}],\\\"search_query\\\": \\\"[state] [store] [sales]\\\",\\\"answer_columns\\\": [{\\\"name\\\": \\\"Total sales\\\"},{\\\"name\\\": \\\"state\\\"},{\\\"name\\\": \\\"store\\\"}],\\\"table\\\": {\\\"table_columns\\\": [{\\\"column_id\\\": \\\"Total sales\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"state\\\",\\\"show_headline\\\": false},{\\\"column_id\\\": \\\"store\\\",\\\"show_headline\\\": false}],\\\"ordered_column_ids\\\": [\\\"state\\\",\\\"store\\\",\\\"Total sales\\\"],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"tableVizPropVersion\\\\\\\": \\\\\\\"V1\\\\\\\"}\\\"},\\\"chart\\\": {\\\"type\\\": \\\"GEO_AREA\\\",\\\"chart_columns\\\": [{\\\"column_id\\\": \\\"Total sales\\\"},{\\\"column_id\\\": \\\"state\\\"},{\\\"column_id\\\": \\\"store\\\"}],\\\"axis_configs\\\": [{\\\"x\\\": [\\\"state\\\"],\\\"y\\\": [\\\"Total sales\\\"]}],\\\"client_state\\\": \\\"\\\",\\\"client_state_v2\\\": \\\"{\\\\\\\"version\\\\\\\": \\\\\\\"V4DOT2\\\\\\\",\\\\\\\"chartProperties\\\\\\\": {\\\\\\\"chartSpecific\\\\\\\": {}},\\\\\\\"axisProperties\\\\\\\": [{\\\\\\\"id\\\\\\\": \\\\\\\"e4943da4-f159-470c-836b-7c6c55d59c2f\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"Y\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"Total sales\\\\\\\"],\\\\\\\"isOpposite\\\\\\\": false}},{\\\\\\\"id\\\\\\\": \\\\\\\"b99d582a-b215-4381-89ad-280c451979e3\\\\\\\",\\\\\\\"properties\\\\\\\": {\\\\\\\"axisType\\\\\\\": \\\\\\\"X\\\\\\\",\\\\\\\"linkedColumns\\\\\\\": [\\\\\\\"state\\\\\\\"]}}],\\\\\\\"systemMultiColorSeriesColors\\\\\\\": [{\\\\\\\"serieName\\\\\\\": \\\\\\\"Total sales\\\\\\\",\\\\\\\"colorMap\\\\\\\": [{\\\\\\\"serieName\\\\\\\": \\\\\\\"state\\\\\\\",\\\\\\\"color\\\\\\\": [\\\\\\\"#ffffb2\\\\\\\",\\\\\\\"#fddd87\\\\\\\",\\\\\\\"#fba35d\\\\\\\",\\\\\\\"#f75534\\\\\\\",\\\\\\\"#f9140a\\\\\\\",\\\\\\\"#d70315\\\\\\\",\\\\\\\"#b10026\\\\\\\"]}]}]}\\\"},\\\"display_mode\\\": \\\"CHART_MODE\\\"},\\\"viz_guid\\\": \\\"4ab1ed61-2930-46d4-af6f-778279d7414a\\\"}],\\\"filters\\\": [{\\\"column\\\": [\\\"region\\\"],\\\"oper\\\": \\\"in\\\",\\\"values\\\": [\\\"Midwest\\\"],\\\"is_mandatory\\\": false,\\\"is_single_value\\\": false,\\\"display_name\\\": \\\"region\\\"}],\\\"layout\\\": {\\\"tabs\\\": [{\\\"name\\\": \\\"Tab 1\\\",\\\"description\\\": \\\"\\\",\\\"tiles\\\": [{\\\"visualization_id\\\": \\\"Viz_1\\\",\\\"x\\\": 0,\\\"y\\\": 0,\\\"height\\\": 8,\\\"width\\\": 6},{\\\"visualization_id\\\": \\\"Viz_4\\\",\\\"x\\\": 6,\\\"y\\\": 0,\\\"height\\\": 8,\\\"width\\\": 6}],\\\"id\\\": \\\"2c4014b5-a606-4639-8ad0-01032ff3fc13\\\"},{\\\"name\\\": \\\"Tab 2\\\",\\\"description\\\": \\\"\\\",\\\"tiles\\\": [{\\\"visualization_id\\\": \\\"Viz_2\\\",\\\"x\\\": 0,\\\"y\\\": 0,\\\"height\\\": 8,\\\"width\\\": 6},{\\\"visualization_id\\\": \\\"Viz_3\\\",\\\"x\\\": 6,\\\"y\\\": 0,\\\"height\\\": 8,\\\"width\\\": 6}],\\\"id\\\": \\\"185b4875-e7c5-43d2-a9bc-0a404107a3ec\\\"}]}}}\",     \"info\": {       \"filename\": \"Copy of Total Sales.liveboard.tml\",       \"name\": \"Copy of Total Sales\",       \"id\": \"2ed8192a-1e9d-47d1-810d-52b14cb0e9fe\",       \"type\": \"liveboard\",       \"status\": {         \"status_code\": \"OK\"       }     }"
  ],
  "create_new": true,
  "all_orgs_context": false,
  "skip_cdw_validation_for_tables": true
}'

Example response🔗

If the API request is successful, ThoughtSpot schedules an import task, and returns the task name and ID in the API response:

{
  "tenant_id": "default-tenant-id",
  "org_id": 0,
  "task_id": "075c322f-b000-4776-9c44-89e13420980c",
  "task_name": "ASYNC_TML_26:Nov:2024-06:06:24",
  "import_response": null,
  "task_status": "IN_QUEUE",
  "author_id": "08c6b203-ff6e-4ed8-b923-35ebbbfef27b",
  "import_policy": "PARTIAL_OBJECT",
  "created_at": null,
  "in_progress_at": null,
  "completed_at": null,
  "total_object_count": 2,
  "object_processed_count": null,
  "modified_at": null
}
Response codes
HTTP status codeDescription

200

Async TML Import Task submitted successfully

400

Invalid request

401

Unauthorized access

403

Forbidden access

500

Unexpected Error

Fetch status of the TML import task🔗

To fetch the status of a scheduled import task, send a POST request to the POST /api/rest/2.0/metadata/tml/async/status API endpoint.

In the request body, include the following attributes:

Form parameterDescriptionDefault

task_ids

Array of strings. Task IDs assigned to the scheduled TML async import operations.

None

task_status

Array of strings. Status of the scheduled import tasks to filter on. The following options are available:

* COMPLETED
* IN_QUEUE
* IN_PROGRESS
* FAILED

None

author_identifier
Optional

String. GUID of the author who initiated the import request.

None

include_import_response
Optional

Boolean. Specify whether to include import response in the task status objects.

false

record_offset
Optional

Integer. The offset point, starting from where the task status should be included in the response.

0

record_size
Optional

Integer. The number of task statuses to include in the response starting from offset position.

Note

The maximum limit for the record_size that user can pass in an API request is 50. If the record_size exceeds this threshold, the API returns a bad request error. To extend the record_size limit, contact ThoughtSpot Support.

5

Important

You can poll up to 100 API requests per minute to get details of your TML import tasks. The API returns an error if you exceed this rate limit.

Example request🔗

curl -X POST \
  --url 'https://{ThoughtSpot-host}/api/rest/2.0/metadata/tml/async/status'  \
  -H 'Accept: application/json' \
  -H 'Content-Type: application/json' \
  -H 'Authorization: Bearer {AUTH_TOKEN}' \
  --data-raw '{
  "record_offset": 0,
  "record_size": 5,
  "include_import_response": true,
  "task_ids": [
    "c8c8c4da-0bc8-4460-8039-cfa7fd598335"
  ],
  "task_status": [
    "COMPLETED"
  ],
  "author_identifier": "95ac814f-eb01-4625-93c7-c7624b29d226"
}'

Example response🔗

If the API request is successful, ThoughtSpot returns the status details of the TML async import tasks. If Orgs are enabled on your instance, the API returns task status only for objects within the current Org context.

{
  "status_list": [
    {
      "tenant_id": "default-tenant-id",
      "org_id": 0,
      "task_id": "c8c8c4da-0bc8-4460-8039-cfa7fd598335",
      "task_name": "ASYNC_TML_26:Nov:2024-06:06:24",
      "import_response": {
        "object": [
          {
            "filename": "tml_0",
            "zip_filename": "zip_tml_0",
            "response": {
              "status": {
                "status_code": "ERROR",
                "error_message": "Invalid YAML/JSON syntax in file."
              }
            },
            "request_index": 0
          },
          {
            "filename": "tml_1",
            "zip_filename": "zip_tml_1",
            "response": {
              "status": {
                "status_code": "ERROR",
                "error_message": "Invalid YAML/JSON syntax in file."
              }
            },
            "request_index": 1
          }
        ],
        "status": {
          "status_code": "OK",
          "error_code": 0,
          "error_message": ""
        }
      },
      "task_status": "COMPLETED",
      "author_id": "08c6b203-ff6e-4ed8-b923-35ebbbfef27b",
      "import_policy": "PARTIAL_OBJECT",
      "created_at": 1732601184212,
      "in_progress_at": 1732601184255,
      "completed_at": 1732601184476,
      "total_object_count": 2,
      "object_processed_count": 2,
      "modified_at": 1732601184476
    }
  ],
  "last_batch": true
}
Response codes
HTTP status codeDescription

200

Async TML import task status fetched successfully

400

Invalid request

401

Unauthorized access

403

Forbidden access

500

Unexpected Error

Export a TML🔗

To export the TML data, your account must have the DATAMANAGEMENT (Can manage data) or ADMINISTRATION (Can administer ThoughtSpot) privilege..

It must be noted that the default format to export the objects is YAML is v1, and JSON in v2 APIs. To export the TML representation of the metadata objects from ThoughtSpot in JSON or YAML format, use one of the following endpoints:

To export the TML representation of the metadata objects in a batch, use one of the following endpoints:

There are several export options available with these APIs:

Export associated objects🔗

To export associated objects, set the following attributes:

  • export_associated
    When set to true, exports the associated objects for the export_ids specified in the API request. The API exports any underlying worksheets, tables, or views for a given object. By default, the API does not export these underlying objects.

  • export_dependent
    Specifies if the Tables of the referenced Connection object must be included in the export.

  • export_connection_as_dependent
    Specifies if a Connection object must be included as a dependent object when exporting a Table, Worksheet, Answer, or Liveboard TML.

Export FQNs🔗

When export_fqn=true, the API exports the FQNs of the referenced objects in the TML data. For example, if you are exporting a Liveboard and its associated objects, the API returns the Liveboard TML data with the FQNs of the referenced Worksheet. Note that the FQN of a referenced object is the same as the GUID of that object.

ThoughtSpot recommends adding the fqn property before importing the TML objects into the system, because only the name of a referenced object is not sufficient to identify the referenced object during TML import. For example, if your ThoughtSpot instance has two worksheets with the same name, the TML import for a Liveboard that uses one of these worksheets would fail unless the Liveboard TML includes the FQN of the referenced Worksheet. The export_fqn attribute is useful when ThoughtSpot has multiple objects with the same name and you want to eliminate ambiguity during TML import. The export_fqn=true property adds the FQNs of the referenced objects in the TML export API response and saves the manual effort of adding FQNs for TML import.

Export schema🔗

Specifies the schema version to use during TML export. By default, the API request uses v1 schema for Worksheets. If you are using Models, set export_schema_version to v2. Models are supported as new datasets from 9.10.0.cl onwards.

Export in a batch🔗

This API operation supports exporting User, User Group, and Role objects only. To export objects in a batch, set the following additional attributes:

  • batch_size
    Exports the specified number of objects in a single API request. A batch size of up to 200 objects is allowed for a single API operation.

  • batch_offset
    Offsets the API response by the specified number. Batch offset value defines the starting position of the records for the results returned by the API.

For more information, see the API documentation in REST API v2 Playground and Export a TML object using REST API v1.

TML modification🔗

ThoughtSpot offers a lot of flexibility within its set of data objects, and there is no particular hierarchy to TML files, but rather just some rules. Visit this page for detailed information on TML modification.

Limitations of working with TML files🔗

There are certain limitations to the changes you can apply by editing a ThoughtSpot object through TML. Visit Limitations of working with TML files for detailed information.

Deployment and version control of TML objects🔗

For information about version control and TML deployment, see the following pages: